6D SLAM with Cached kd-tree Search

نویسندگان

  • Andreas Nüchter
  • Kai Lingemann
  • Joachim Hertzberg
چکیده

6D SLAM (Simultaneous Localization and Mapping) or 6D Concurrent Localization and Mapping of mobile robots considers six degrees of freedom for the robot pose, namely, the x, y and z coordinates and the roll, yaw and pitch angles. In previous work we presented our scan matching based 6D SLAM approach [10–12,16], where scan matching is based on the well known iterative closest point (ICP) algorithm [3]. Efficient implementations of this algorithm are a result of a fast computation of closest points. The usual approach, i.e., using kd-trees is extended in this paper. We describe a novel search stategy, that leads to significant speed-ups. Our mapping system is real-time capable, i.e., 3D maps are computed using the resources of the used Kurt3D robotic hardware.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6D SLAM - 3D mapping outdoor environments

6D SLAM simultaneous localization and mapping or 6D concurrent localization and mapping of mobile robots considers six dimensions for the robot pose, namely, the x, y, and z coordinates and the roll, yaw, and pitch angles. Robot motion and localization on natural surfaces, e.g., driving outdoor with a mobile robot, must regard these degrees of freedom. This paper presents a robotic mapping meth...

متن کامل

Parallel and Cached Scan Matching for Robotic 3D Mapping

Intelligent autonomous acting of mobile robots in unstructured environments requires 3D maps. Since manual mapping is a tedious job, automatization of this job is necessary. Automatic, consistent volumetric modeling of environments requires a solution to the simultaneous localization and map building problem (SLAM problem). In 3D this task is computationally expensive, since the environments ar...

متن کامل

The Efficient Extension of Globally Consistent Scan Matching to 6 DoF

Over ten years ago, Lu and Milios presented a probabilistic scan matching algorithm for solving the simultaneous localization and mapping (SLAM) problem with 2D laser range scans, a standard in robotics. This paper presents an extension to this GraphSLAM method. Our iterative algorithm uses a sparse network to represent the relations between several overlapping 3D scans, computes in every step ...

متن کامل

Extracting Drivable Surfaces in Outdoor 6d Slam

A basic issue of mobile robotics is generating environment maps automatically. Outdoor terrain is challenging since the ground is uneven and the surrounding is structured irregularly. In earlier work, we have introduced 6D SLAM (Simultaneous Localization and Mapping) as a method to taking all six DOF of robot poses (x, y, z translation; roll, pitch, yaw angles) into account. This paper adds to ...

متن کامل

Benchmarking urban six-degree-of-freedom simultaneous localization and mapping

Quite a number of approaches for solving the simultaneous localization and mapping (SLAM) problem exist by now. Some of them have recently been extended to mapping environments with six-degree-of-freedom poses, yielding 6D SLAM approaches. To demonstrate the capabilities of the respective algorithms, it is common practice to present generated maps and successful loop closings in large outdoor e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006